Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 572
1.
Nat Commun ; 15(1): 3804, 2024 May 07.
Article En | MEDLINE | ID: mdl-38714648

Messenger RNA (mRNA) therapeutics delivered via lipid nanoparticles hold the potential to treat metabolic diseases caused by protein deficiency, including propionic acidemia (PA), methylmalonic acidemia (MMA), and phenylketonuria (PKU). Herein we report results from multiple independent preclinical studies of mRNA-3927 (an investigational treatment for PA), mRNA-3705 (an investigational treatment for MMA), and mRNA-3210 (an investigational treatment for PKU) in murine models of each disease. All 3 mRNA therapeutics exhibited pharmacokinetic/pharmacodynamic (PK/PD) responses in their respective murine model by driving mRNA, protein, and/or protein activity responses, as well as by decreasing levels of the relevant biomarker(s) when compared to control-treated animals. These preclinical data were then used to develop translational PK/PD models, which were scaled allometrically to humans to predict starting doses for first-in-human clinical studies for each disease. The predicted first-in-human doses for mRNA-3927, mRNA-3705, and mRNA-3210 were determined to be 0.3, 0.1, and 0.4 mg/kg, respectively.


Amino Acid Metabolism, Inborn Errors , Disease Models, Animal , Phenylketonurias , Propionic Acidemia , RNA, Messenger , Propionic Acidemia/genetics , Propionic Acidemia/therapy , Propionic Acidemia/drug therapy , Animals , Phenylketonurias/genetics , Phenylketonurias/drug therapy , Phenylketonurias/therapy , RNA, Messenger/genetics , RNA, Messenger/metabolism , Amino Acid Metabolism, Inborn Errors/genetics , Amino Acid Metabolism, Inborn Errors/therapy , Amino Acid Metabolism, Inborn Errors/drug therapy , Mice , Humans , Male , Female , Nanoparticles/chemistry , Mice, Inbred C57BL , Liposomes
2.
J Inherit Metab Dis ; 47(3): 476-493, 2024 May.
Article En | MEDLINE | ID: mdl-38581234

Neurodevelopment is a highly organized and complex process involving lasting and often irreversible changes in the central nervous system. Inherited disorders of neurotransmission (IDNT) are a group of genetic disorders where neurotransmission is primarily affected, resulting in abnormal brain development from early life, manifest as neurodevelopmental disorders and other chronic conditions. In principle, IDNT (particularly those of monogenic causes) are amenable to gene replacement therapy via precise genetic correction. However, practical challenges for gene replacement therapy remain major hurdles for its translation from bench to bedside. We discuss key considerations for the development of gene replacement therapies for IDNT. As an example, we describe our ongoing work on gene replacement therapy for succinic semialdehyde dehydrogenase deficiency, a GABA catabolic disorder.


Amino Acid Metabolism, Inborn Errors , Genetic Therapy , Succinate-Semialdehyde Dehydrogenase , Synaptic Transmission , Humans , Succinate-Semialdehyde Dehydrogenase/deficiency , Succinate-Semialdehyde Dehydrogenase/genetics , Genetic Therapy/methods , Amino Acid Metabolism, Inborn Errors/therapy , Amino Acid Metabolism, Inborn Errors/genetics , Synaptic Transmission/genetics , Animals
3.
J Neurodev Disord ; 16(1): 21, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38658850

BACKGROUND: Succinic semialdehyde dehydrogenase deficiency (SSADHD) represents a model neurometabolic disease at the fulcrum of translational research within the Boston Children's Hospital Intellectual and Developmental Disabilities Research Centers (IDDRC), including the NIH-sponsored natural history study of clinical, neurophysiological, neuroimaging, and molecular markers, patient-derived induced pluripotent stem cells (iPSC) characterization, and development of a murine model for tightly regulated, cell-specific gene therapy. METHODS: SSADHD subjects underwent clinical evaluations, neuropsychological assessments, biochemical quantification of γ-aminobutyrate (GABA) and related metabolites, electroencephalography (standard and high density), magnetoencephalography, transcranial magnetic stimulation, magnetic resonance imaging and spectroscopy, and genetic tests. This was parallel to laboratory molecular investigations of in vitro GABAergic neurons derived from induced human pluripotent stem cells (hiPSCs) of SSADHD subjects and biochemical analyses performed on a versatile murine model that uses an inducible and reversible rescue strategy allowing on-demand and cell-specific gene therapy. RESULTS: The 62 SSADHD subjects [53% females, median (IQR) age of 9.6 (5.4-14.5) years] included in the study had a reported symptom onset at ∼ 6 months and were diagnosed at a median age of 4 years. Language developmental delays were more prominent than motor. Autism, epilepsy, movement disorders, sleep disturbances, and various psychiatric behaviors constituted the core of the disorder's clinical phenotype. Lower clinical severity scores, indicating worst severity, coincided with older age (R= -0.302, p = 0.03), as well as age-adjusted lower values of plasma γ-aminobutyrate (GABA) (R = 0.337, p = 0.02) and γ-hydroxybutyrate (GHB) (R = 0.360, p = 0.05). While epilepsy and psychiatric behaviors increase in severity with age, communication abilities and motor function tend to improve. iPSCs, which were differentiated into GABAergic neurons, represent the first in vitro neuronal model of SSADHD and express the neuronal marker microtubule-associated protein 2 (MAP2), as well as GABA. GABA-metabolism in induced GABAergic neurons could be reversed using CRISPR correction of the pathogenic variants or mRNA transfection and SSADHD iPSCs were associated with excessive glutamatergic activity and related synaptic excitation. CONCLUSIONS: Findings from the SSADHD Natural History Study converge with iPSC and animal model work focused on a common disorder within our IDDRC, deepening our knowledge of the pathophysiology and longitudinal clinical course of a complex neurodevelopmental disorder. This further enables the identification of biomarkers and changes throughout development that will be essential for upcoming targeted trials of enzyme replacement and gene therapy.


Amino Acid Metabolism, Inborn Errors , Developmental Disabilities , Induced Pluripotent Stem Cells , Succinate-Semialdehyde Dehydrogenase , Adolescent , Animals , Child , Child, Preschool , Female , Humans , Male , Mice , Amino Acid Metabolism, Inborn Errors/therapy , Amino Acid Metabolism, Inborn Errors/physiopathology , Amino Acid Metabolism, Inborn Errors/genetics , Amino Acid Metabolism, Inborn Errors/complications , Amino Acid Metabolism, Inborn Errors/metabolism , Brain/metabolism , Brain/physiopathology , Disease Models, Animal , GABAergic Neurons/metabolism , gamma-Aminobutyric Acid/metabolism , Induced Pluripotent Stem Cells/metabolism , Neurodevelopmental Disorders/metabolism , Neurodevelopmental Disorders/etiology , Neurodevelopmental Disorders/genetics , Succinate-Semialdehyde Dehydrogenase/deficiency , Succinate-Semialdehyde Dehydrogenase/metabolism , Succinate-Semialdehyde Dehydrogenase/genetics
4.
Mol Genet Metab ; 142(1): 108363, 2024 May.
Article En | MEDLINE | ID: mdl-38452608

Succinic semialdehyde dehydrogenase deficiency (SSADHD) (OMIM #271980) is a rare autosomal recessive metabolic disorder caused by pathogenic variants of ALDH5A1. Deficiency of SSADH results in accumulation of γ-aminobutyric acid (GABA) and other GABA-related metabolites. The clinical phenotype of SSADHD includes a broad spectrum of non-pathognomonic symptoms such as cognitive disabilities, communication and language deficits, movement disorders, epilepsy, sleep disturbances, attention problems, anxiety, and obsessive-compulsive traits. Current treatment options for SSADHD remain supportive, but there are ongoing attempts to develop targeted genetic therapies. This study aimed to create consensus guidelines for the diagnosis and management of SSADHD. Thirty relevant statements were initially addressed by a systematic literature review, resulting in different evidence levels of strength according to the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) criteria. The highest level of evidence (level A), based on randomized controlled trials, was unavailable for any of the statements. Based on cohort studies, Level B evidence was available for 12 (40%) of the statements. Thereupon, through a process following the Delphi Method and directed by the Appraisal of Guidelines for Research and Evaluation (AGREE II) criteria, expert opinion was sought, and members of an SSADHD Consensus Group evaluated all the statements. The group consisted of neurologists, epileptologists, neuropsychologists, neurophysiologists, metabolic disease specialists, clinical and biochemical geneticists, and laboratory scientists affiliated with 19 institutions from 11 countries who have clinical experience with SSADHD patients and have studied the disorder. Representatives from parent groups were also included in the Consensus Group. An analysis of the survey's results yielded 25 (83%) strong and 5 (17%) weak agreement strengths. These first-of-their-kind consensus guidelines intend to consolidate and unify the optimal care that can be provided to individuals with SSADHD.


Amino Acid Metabolism, Inborn Errors , Developmental Disabilities , Succinate-Semialdehyde Dehydrogenase , Succinate-Semialdehyde Dehydrogenase/deficiency , Humans , Succinate-Semialdehyde Dehydrogenase/genetics , Amino Acid Metabolism, Inborn Errors/diagnosis , Amino Acid Metabolism, Inborn Errors/therapy , Amino Acid Metabolism, Inborn Errors/genetics , Consensus , gamma-Aminobutyric Acid/metabolism , Practice Guidelines as Topic
5.
BMC Pediatr ; 24(1): 119, 2024 Feb 14.
Article En | MEDLINE | ID: mdl-38355526

OBJECTIVE: This study investigated the clinical, imaging, and electroencephalogram (EEG) characteristics of methylmalonic acidemia (MMA) with nervous system damage as the primary manifestation. METHODS: From January 2017 to November 2022, patients with nervous system injury as the main clinical manifestation, diagnosed with methylmalonic acidemia by metabolic and genetic testing, were enrolled and analyzed. Their clinical, imaging, and electroencephalogram data were analyzed. RESULTS: A total of 18 patients were enrolled, including 15 males and 3 females. The clinical symptoms were convulsions, poor feeding, growth retardation, disorder of consciousness, developmental delay, hypotonia, and blood system changes. There were 6 cases (33%) of hydrocephalus, 9 (50%) of extracerebral space widened, 5 (27%) of corpus callosum thinning, 3 (17%) of ventricular dilation, 3 (17%) of abnormal signals in the brain parenchyma (frontal lobe, basal ganglia region, and brain stem), and 3 (17%) of abnormal signals in the lateral paraventricular. In addition, there were 3 cases (17%) of cerebral white matter atrophy and 1 (5%) of cytotoxic edema in the basal ganglia and cerebral peduncle. EEG data displayed 2 cases (11%) of hypsarrhythmia, 3 (17%) of voltage reduction, 12(67%) of abnormal discharge, 13 (72%) of abnormal sleep physiological waves or abnormal sleep structure, 1 (5%) of immature (delayed) EEG development, and 8 (44%) of slow background. There were 2 cases (11%) of spasms, 1 (5%) of atonic seizures, and 1 (5%) of myoclonic seizures. There were 16 patients (89%) with hyperhomocysteinemia. During follow-up, 1 patient was lost to follow-up, and 1 died. In total, 87.5% (14/16) of the children had varying developmental delays. EEG was re-examined in 11 cases, of which 8 were normal, and 3 were abnormal. Treatments included intramuscular injections of vitamin B12, L-carnitine, betaine, folic acid, and oral antiepileptic therapy. Acute treatment included anti-infective, blood transfusion, fluid replacement, and correcting acidosis. The other treatments included low-protein diets and special formula milk powder. CONCLUSION: Methylmalonic acidemia can affect the central nervous system, leading to structural changes or abnormal signals on brain MRI. Metabolic screening and genetic testing help clarify the diagnosis. EEG can reflect changes in brain waves during the acute phase.


Amino Acid Metabolism, Inborn Errors , Child , Male , Female , Humans , Amino Acid Metabolism, Inborn Errors/diagnosis , Amino Acid Metabolism, Inborn Errors/genetics , Amino Acid Metabolism, Inborn Errors/therapy , Vitamin B 12 , Mutation , Seizures/etiology , Seizures/drug therapy , Electroencephalography , Methylmalonic Acid , Oxidoreductases/genetics
6.
Orphanet J Rare Dis ; 19(1): 17, 2024 Jan 18.
Article En | MEDLINE | ID: mdl-38238766

Aromatic L-amino acid decarboxylase (AADC) deficiency is a rare genetic disorder of monoamine neurotransmitter synthesis that presents with a range of symptoms, including motor dysfunction and limited attainment of developmental motor milestones. The approval of eladocagene exuparvovec, a gene therapy for AADC deficiency with demonstrated efficacy for motor improvements, now expands the range of motor outcomes possible for patients with this disorder. However, recommendations and guidelines for therapy following treatment with gene therapy are lacking. To ensure patients can reach their full potential following treatment with gene therapy, it is essential they receive rehabilitation therapies designed specifically with their impairments and goals in mind. Therefore, we highlight specific rehabilitative needs of patients following gene therapy and propose a set of recommendations for the post-treatment period based on collective experiences of therapists, physicians, and caregivers treating and caring for patients with AADC deficiency who have been treated with gene therapy. These recommendations include a focus on periods of intensive therapy, facilitating active movements, training for functional abilities, cognitive and communication training, parent/caregiver empowerment, collaboration between therapists and caregivers to develop in-home programs, and the incorporation of supplemental forms of therapy that patients and their families may find more enjoyable and engaging. Many of these rehabilitative strategies may be employed prior to gene therapy. However, these recommendations will be valuable for therapists, caregivers, and wider treatment teams as they prepare for the post-treatment journey with these patients. Furthermore, the considerations and recommendations presented here may prove beneficial outside the AADC deficiency community as gene therapies and other treatments are developed and approved for other rare diseases.


Amino Acid Metabolism, Inborn Errors , Humans , Amino Acid Metabolism, Inborn Errors/genetics , Amino Acid Metabolism, Inborn Errors/therapy , Amino Acid Metabolism, Inborn Errors/diagnosis , Aromatic-L-Amino-Acid Decarboxylases/genetics , Genetic Therapy , Amino Acids
7.
J Inherit Metab Dis ; 47(1): 63-79, 2024 Jan.
Article En | MEDLINE | ID: mdl-37530705

Organic acidemias (OA) are a group of rare autosomal recessive disorders of intermediary metabolism that result in a systemic elevation of organic acid. Despite optimal dietary and cofactor therapy, OA patients still suffer from potentially lethal metabolic instability and experience long-term multisystemic complications. Severely affected patients can benefit from elective liver transplantation, which restores hepatic enzymatic activity, improves metabolic stability, and provides the theoretical basis for the pursuit of gene therapy as a new treatment for patients. Because of the poor outcomes reported in those with OA, especially methylmalonic and propionic acidemia, multiple gene therapy approaches have been explored in relevant animal models. Here, we review the results of gene therapy experiments performed using MMA and PA mouse models to illustrate experimental paradigms that could be applicable for all forms of OA.


Amino Acid Metabolism, Inborn Errors , Liver Transplantation , Propionic Acidemia , Animals , Mice , Humans , Propionic Acidemia/genetics , Propionic Acidemia/therapy , Propionic Acidemia/complications , Amino Acid Metabolism, Inborn Errors/genetics , Amino Acid Metabolism, Inborn Errors/therapy , Amino Acid Metabolism, Inborn Errors/complications , Liver Transplantation/adverse effects , Genetic Therapy , Disease Models, Animal , Methylmalonic Acid
8.
Zhongguo Dang Dai Er Ke Za Zhi ; 25(12): 1270-1275, 2023 Dec 15.
Article Zh | MEDLINE | ID: mdl-38112146

OBJECTIVES: To summarize the clinical characteristics and nutrition therapy for children with lysinuric protein intolerance (LPI). METHODS: The clinical manifestations, laboratory test results and enteral nutrition treatment in a girl with LPI diagnosed in Xiangya Hospital, Central South University were retrospective analyzed. Additionally, the data of the children with LPI reported in China and overseas were reviewed. RESULTS: A case of 4-year-old girl was presented, who exhibited significant gastrointestinal symptoms, such as chronic abdominal distension, prolonged diarrhea, recurrent pneumonia, and limited growth. She had a poor response to anti-infection treatment. After receiving enteral nutrition therapy, she did not experience any gastrointestinal discomfort, and there were improvements in the levels of hemoglobin, albumin, and blood ammonia. Unfortunately, due to serious illness, she declined further treatment and later passed away. A total of 92 cases of pediatric patients with LPI have been reported to date, including one case reported in this study. Most children with LPI experienced disease onset after weaning or introduction of complementary foods, presenting with severe digestive system symptoms, malnutrition, and growth retardation. It is noteworthy that only 50% (46/92) of these cases received nutritional therapy, which effectively improved their nutritional status. Among the 92 children, 8 (9%) died, and long-term follow-up data were lacking in other reports. CONCLUSIONS: LPI often involves the digestive system and may result in growth restriction with a poor prognosis. Nutritional therapy plays a crucial role in the comprehensive treatment of LPI.


Amino Acid Metabolism, Inborn Errors , Malnutrition , Child, Preschool , Female , Humans , Amino Acid Metabolism, Inborn Errors/therapy , Enteral Nutrition/methods , Retrospective Studies
9.
Dis Model Mech ; 16(11)2023 Nov 01.
Article En | MEDLINE | ID: mdl-37994477

Amino acids are organic molecules that serve as basic substrates for protein synthesis and have additional key roles in a diverse array of cellular functions, including cell signaling, gene expression, energy production and molecular biosynthesis. Genetic defects in the synthesis, catabolism or transport of amino acids underlie a diverse class of diseases known as inborn errors of amino acid metabolism. Individually, these disorders are rare, but collectively, they represent an important group of potentially treatable disorders. In this Clinical Puzzle, we discuss the pathophysiology, clinical features and management of three disorders that showcase the diverse clinical presentations of disorders of amino acid metabolism: phenylketonuria, lysinuric protein intolerance and homocystinuria due to cystathionine ß-synthase (CBS) deficiency. Understanding the biochemical perturbations caused by defects in amino acid metabolism will contribute to ongoing development of diagnostic and management strategies aimed at improving the morbidity and mortality associated with this diverse group of disorders.


Amino Acid Metabolism, Inborn Errors , Homocystinuria , Humans , Amino Acid Metabolism, Inborn Errors/therapy , Amino Acid Metabolism, Inborn Errors/diagnosis , Homocystinuria/drug therapy , Amino Acids
10.
Orphanet J Rare Dis ; 18(1): 306, 2023 09 28.
Article En | MEDLINE | ID: mdl-37770946

BACKGROUND: cblC defect is the most common type of methylmalonic acidemia in China. Patients with late-onset form (>1 year) are often misdiagnosed due to heterogeneous symptoms. This study aimed to describe clinical characteristics and evaluate long-term outcomes of Chinese patients with late-onset cblC defect. METHODS: A total of 85 patients with late-onset cblC defect were enrolled. Clinical data, including manifestations, metabolites, molecular diagnosis, treatment and outcome, were summarized and analyzed. RESULTS: The age of onset ranged from 2 to 32.8 years old (median age 8.6 years, mean age 9.4 years). The time between first symptoms and diagnosis ranged from a few days to 20 years (median time 2 months, mean time 20.7 months). Neuropsychiatric symptoms were presented as first symptoms in 68.2% of cases, which were observed frequently in schoolchildren or adolescents. Renal involvement and cardiovascular disease were observed in 20% and 8.2% of cases, respectively, which occurred with the highest prevalence in preschool children. Besides the initial symptoms, the disease progressed in most patients and cognitive decline became the most frequent symptom overall. The levels of propionylcarnitine, propionylcarnitine / acetylcarnitine ratio, methylmalonic acid, methylcitric acid and homocysteine, were decreased remarkably after treatment (P<0.001). Twenty-four different mutations of MMACHC were identified in 78 patients, two of which were novel. The c.482G>A variant was the most frequent mutated allele in this cohort (25%). Except for 16 patients who recovered completely, the remaining patients were still left with varying degrees of sequelae in a long-term follow-up. The available data from 76 cases were analyzed by univariate analysis and multivariate logistic regression analysis, and the results showed that the time from onset to diagnosis (OR = 1.025, P = 0. 024) was independent risk factors for poor outcomes. CONCLUSIONS: The diagnosis of late-onset cblC defect is often delayed due to poor awareness of its various and nonspecific symptoms, thus having an adverse effect on the prognosis. It should be considered in patients with unexplained neuropsychiatric and other conditions such as renal involvement, cardiovascular diseases or even multiple organ damage. The c.482G>A variant shows the highest frequency in these patients. Prompt treatment appears to be beneficial.


Amino Acid Metabolism, Inborn Errors , Homocystinuria , Adolescent , Child, Preschool , Humans , Child , Young Adult , Adult , Homocystinuria/diagnosis , Oxidoreductases/genetics , Amino Acid Metabolism, Inborn Errors/diagnosis , Amino Acid Metabolism, Inborn Errors/genetics , Amino Acid Metabolism, Inborn Errors/therapy , Carnitine , Mutation/genetics , Methylmalonic Acid , Vitamin B 12
12.
J Inherit Metab Dis ; 46(4): 554-572, 2023 07.
Article En | MEDLINE | ID: mdl-37243446

Methylmalonic Acidemia (MMA) is a heterogenous group of inborn errors of metabolism caused by a defect in the methylmalonyl-CoA mutase (MMUT) enzyme or the synthesis and transport of its cofactor, 5'-deoxy-adenosylcobalamin. It is characterized by life-threatening episodes of ketoacidosis, chronic kidney disease, and other multiorgan complications. Liver transplantation can improve patient stability and survival and thus provides clinical and biochemical benchmarks for the development of hepatocyte-targeted genomic therapies. Data are presented from a US natural history protocol that evaluated subjects with different types of MMA including mut-type (N = 91), cblB-type (15), and cblA-type MMA (17), as well as from an Italian cohort of mut-type (N = 19) and cblB-type MMA (N = 2) subjects, including data before and after organ transplantation in both cohorts. Canonical metabolic markers, such as serum methylmalonic acid and propionylcarnitine, are variable and affected by dietary intake and renal function. We have therefore explored the use of the 1-13 C-propionate oxidation breath test (POBT) to measure metabolic capacity and the changes in circulating proteins to assess mitochondrial dysfunction (fibroblast growth factor 21 [FGF21] and growth differentiation factor 15 [GDF15]) and kidney injury (lipocalin-2 [LCN2]). Biomarker concentrations are higher in patients with the severe mut0 -type and cblB-type MMA, correlate with a decreased POBT, and show a significant response postliver transplant. Additional circulating and imaging markers to assess disease burden are necessary to monitor disease progression. A combination of biomarkers reflecting disease severity and multisystem involvement will be needed to help stratify patients for clinical trials and assess the efficacy of new therapies for MMA.


Amino Acid Metabolism, Inborn Errors , Humans , Mutation , Amino Acid Metabolism, Inborn Errors/diagnosis , Amino Acid Metabolism, Inborn Errors/therapy , Amino Acid Metabolism, Inborn Errors/complications , Biomarkers , Disease Progression , Methylmalonic Acid , Methylmalonyl-CoA Mutase/genetics , Methylmalonyl-CoA Mutase/metabolism
13.
Mol Genet Metab ; 139(3): 107612, 2023 07.
Article En | MEDLINE | ID: mdl-37245378

Clinical trial development in rare diseases poses significant study design and methodology challenges, such as disease heterogeneity and appropriate patient selection, identification and selection of key endpoints, decisions on study duration, choice of control groups, selection of appropriate statistical analyses, and patient recruitment. Therapeutic development in organic acidemias (OAs) shares many challenges with other inborn errors of metabolism, such as incomplete understanding of natural history, heterogenous disease presentations, requirement for sensitive outcome measures and difficulties recruiting a small sample of participants. Here, we review strategies for the successful development of a clinical trial to evaluate treatment response in propionic and methylmalonic acidemias. Specifically, we discuss crucial decisions that may significantly impact success of the study, including patient selection, identification and selection of endpoints, determination of the study duration, consideration of control groups including natural history controls, and selection of appropriate statistical analyses. The significant challenges associated with designing a clinical trial in rare disease can sometimes be successfully met through strategic engagement with experts in the rare disease, seeking regulatory and biostatistical guidance, and early involvement of patients and families.


Amino Acid Metabolism, Inborn Errors , Propionic Acidemia , Humans , Propionic Acidemia/genetics , Propionic Acidemia/therapy , Rare Diseases/therapy , Amino Acid Metabolism, Inborn Errors/genetics , Amino Acid Metabolism, Inborn Errors/therapy , Research Design , Methylmalonic Acid
14.
J Inherit Metab Dis ; 46(3): 436-449, 2023 05.
Article En | MEDLINE | ID: mdl-37078237

Methylmalonic acidemia (MMA) is a severe inborn error of metabolism that is characterized by pleiotropic metabolic perturbations and multiorgan pathology. Treatment options are limited and non-curative as the underlying causative molecular mechanisms remain unknown. While earlier studies have focused on the potential direct toxicity of metabolites such as methylmalonic and propionic acid as a mechanism to explain disease pathophysiology, new observations have revealed that aberrant acylation, specifically methylmalonylation, is a characteristic feature of MMA. The mitochondrial sirtuin enzyme SIRT5 is capable of recognizing and removing this PTM, however, reduced protein levels of SIRT5 along with other mitochondrial SIRTs 3 and 4 in MMA and potentially reduced function of all three indicates aberrant acylation may require clinical intervention. Therefore, targeting posttranslational modifications may represent a new therapeutic approach to treat MMA and related organic acidemias.


Amino Acid Metabolism, Inborn Errors , Propionic Acidemia , Humans , Amino Acid Metabolism, Inborn Errors/therapy , Mitochondria/metabolism , Methylmalonyl-CoA Mutase/metabolism , Methylmalonic Acid
15.
Eur J Pediatr ; 182(6): 2535-2545, 2023 Jun.
Article En | MEDLINE | ID: mdl-36928758

Aromatic L-amino acid decarboxylase (AADC) deficiency is a rare inherited neurometabolic disorder that can lead to severe physical and developmental impairment. This report includes 16 patients from the Middle East and is the largest series of patients with confirmed AADC deficiency from this region reported to date. The patients displayed a range of signs and symptoms at presentation and almost all failed to reach major motor milestones. Missed and delayed diagnoses were common leading to the late introduction of targeted treatments. Eight unique variants were identified in the DDC gene, including six missense and two intronic variants. A previously undescribed variant was identified: an intronic variant between exons 13 and 14 (c.1243-10A>G). The patients were mostly treated with currently recommended medications, including dopamine agonists, vitamin B6, and monoamine oxidase inhibitors. One patient responded well, but treatment outcomes were otherwise mostly limited to mild symptomatic improvements. Five patients had died by the time of data collection, confirming that the condition is associated with premature mortality. There is an urgent need for earlier diagnosis, particularly given the potential for gene therapy as a transformative treatment for AADC deficiency when provided at an early age.  Conclusions: Delays in the diagnosis of AADC deficiency are common. There is an urgent need for earlier diagnosis, particularly given the potential for gene therapy as a transformative treatment for AADC deficiency when provided at an early age. What is Known: • Aromatic L-amino acid decarboxylase deficiency is a rare neurometabolic disorder that can lead to severe physical and developmental impairment. • Currently recommended medications provide mostly mild symptomatic improvements. What is New: • The clinical presentation of sixteen patients with confirmed AADC deficiency varied considerably and almost all failed to reach major motor milestones. • There is an urgent need for earlier diagnosis, given the potential for gene therapy as a transformative treatment for AADC deficiency when provided at an early age.


Amino Acid Metabolism, Inborn Errors , Aromatic-L-Amino-Acid Decarboxylases , Humans , Amino Acid Metabolism, Inborn Errors/diagnosis , Amino Acid Metabolism, Inborn Errors/genetics , Amino Acid Metabolism, Inborn Errors/therapy , Aromatic-L-Amino-Acid Decarboxylases/genetics , Aromatic-L-Amino-Acid Decarboxylases/therapeutic use , Dopamine Agonists/therapeutic use , Mutation
16.
J Emerg Med ; 64(4): 496-501, 2023 04.
Article En | MEDLINE | ID: mdl-37002163

BACKGROUND: Organic acidemias are rare genetic mutations, most commonly identified in the newborn period. Late-onset presentations present a diagnostic conundrum. Early identification and appropriate management can be lifesaving. CASE REPORT: We describe the case of a 3-year-old boy who presented to urgent care with 2 days of nausea, vomiting, and diarrhea followed by respiratory distress, shock, and encephalopathy. Brisk recognition of his shock state led to an urgent transfer to a tertiary care pediatric emergency department by air where his shock was treated and hyperammonemia was uncovered, leading to the diagnosis of late-onset propionic acidemia, which was subsequently managed with a good outcome. WHY SHOULD AN EMERGENCY PHYSICIAN BE AWARE OF THIS?: Late-onset presentations of inborn errors of metabolism, including organic acidemias, represent one of the most challenging pediatric cases an emergency physician can encounter. This case reviews the management and diagnosis of a late-onset inborn error of metabolism and emphasizes how prompt diagnosis and treatment can lead to a favorable outcome.


Amino Acid Metabolism, Inborn Errors , Hyperammonemia , Propionic Acidemia , Infant, Newborn , Male , Child , Humans , Child, Preschool , Propionic Acidemia/diagnosis , Propionic Acidemia/therapy , Dehydration/diagnosis , Dehydration/etiology , Amino Acid Metabolism, Inborn Errors/diagnosis , Amino Acid Metabolism, Inborn Errors/therapy , Vomiting/etiology , Emergency Service, Hospital
17.
Nutrients ; 15(3)2023 Jan 19.
Article En | MEDLINE | ID: mdl-36771238

3-Hydroxy-3-Methylglutaryl-CoA Lyase (HMGCL) deficiency can be a very severe disorder that typically presents with acute metabolic decompensation with features of hypoketotic hypoglycemia, hyperammonemia, and metabolic acidosis. A retrospective chart and literature review of Australian patients over their lifespan, incorporating acute and long-term dietary management, was performed. Data from 10 patients contributed to this study. The index case of this disorder was lost to follow-up, but there is 100% survival in the remainder of the cases despite several having experienced life-threatening episodes. In the acute setting, five of nine patients have used 900 mg/kg/day of sodium D,L 3-hydroxybutyrate in combination with intravenous dextrose-containing fluids (delivering glucose above estimated basal utilization requirements). All patients have been on long-term protein restriction, and those diagnosed more recently have had additional fat restriction. Most patients take L-carnitine. Three children and none of the adults take nocturnal uncooked cornstarch. Of the cohort, there were two patients that presented atypically-one with fulminant liver failure and the other with isolated developmental delay. Dietary management in patients with HMGCL deficiency is well tolerated, and rapid institution of acute supportive metabolic treatment is imperative to optimizing survival and improve outcomes in this disorder.


Amino Acid Metabolism, Inborn Errors , Hyperammonemia , Child , Adult , Humans , Retrospective Studies , Australia , Amino Acid Metabolism, Inborn Errors/therapy
18.
J Inherit Metab Dis ; 46(3): 520-535, 2023 05.
Article En | MEDLINE | ID: mdl-36591944

Organic acidurias, such as glutaric aciduria type 1 (GA1), methylmalonic (MMA), and propionic aciduria (PA) are a prominent group of inherited metabolic diseases involving accumulation of eponymous metabolites causing endogenous intoxication. For all three conditions, guidelines for diagnosis and management have been developed and revised over the last years, resulting in three revisions for GA1 and one revision for MMA/PA. The process of clinical guideline development in rare metabolic disorders is challenged by the scarcity and limited quality of evidence available. The body of literature is often fragmentary and where information is present, it is usually derived from small sample sizes. Therefore, the development of guidelines for GA1 and MMA/PA was initially confronted with a poor evidence foundation that hindered formulation of concrete recommendations in certain contexts, triggering specific research projects and initiation of longitudinal, prospective observational studies using patient registries. Reversely, these observational studies contributed to evaluate the value of newborn screening, phenotypic diversities, and treatment effects, thus significantly improving the quality of evidence and directly influencing formulation and evidence levels of guideline recommendations. Here, we present insights into interactions between guideline development and (pre)clinical research for GA1 and MMA/PA, and demonstrate how guidelines gradually improved from revision to revision. We describe how clinical studies help to unravel the relative impact of therapeutic interventions on outcome and conclude that despite new and better quality of research data over the last decades, significant shortcomings of evidence regarding prognosis and treatment remain. It appears that development of clinical guidelines can directly help to guide research, and vice versa.


Amino Acid Metabolism, Inborn Errors , Brain Diseases, Metabolic , Metabolic Diseases , Propionic Acidemia , Infant, Newborn , Humans , Amino Acid Metabolism, Inborn Errors/diagnosis , Amino Acid Metabolism, Inborn Errors/therapy , Amino Acid Metabolism, Inborn Errors/metabolism , Brain Diseases, Metabolic/diagnosis , Propionic Acidemia/diagnosis
20.
J Inherit Metab Dis ; 46(3): 482-519, 2023 05.
Article En | MEDLINE | ID: mdl-36221165

Glutaric aciduria type 1 is a rare inherited neurometabolic disorder of lysine metabolism caused by pathogenic gene variations in GCDH (cytogenic location: 19p13.13), resulting in deficiency of mitochondrial glutaryl-CoA dehydrogenase (GCDH) and, consequently, accumulation of glutaric acid, 3-hydroxyglutaric acid, glutaconic acid and glutarylcarnitine detectable by gas chromatography/mass spectrometry (organic acids) and tandem mass spectrometry (acylcarnitines). Depending on residual GCDH activity, biochemical high and low excreting phenotypes have been defined. Most untreated individuals present with acute onset of striatal damage before age 3 (to 6) years, precipitated by infectious diseases, fever or surgery, resulting in irreversible, mostly dystonic movement disorder with limited life expectancy. In some patients, striatal damage develops insidiously. In recent years, the clinical phenotype has been extended by the finding of extrastriatal abnormalities and cognitive dysfunction, preferably in the high excreter group, as well as chronic kidney failure. Newborn screening is the prerequisite for pre-symptomatic start of metabolic treatment with low lysine diet, carnitine supplementation and intensified emergency treatment during catabolic episodes, which, in combination, have substantially improved neurologic outcome. In contrast, start of treatment after onset of symptoms cannot reverse existing motor dysfunction caused by striatal damage. Dietary treatment can be relaxed after the vulnerable period for striatal damage, that is, age 6 years. However, impact of dietary relaxation on long-term outcomes is still unclear. This third revision of evidence-based recommendations aims to re-evaluate previous recommendations (Boy et al., J Inherit Metab Dis, 2017;40(1):75-101; Kolker et al., J Inherit Metab Dis 2011;34(3):677-694; Kolker et al., J Inherit Metab Dis, 2007;30(1):5-22) and to implement new research findings on the evolving phenotypic diversity as well as the impact of non-interventional variables and treatment quality on clinical outcomes.


Amino Acid Metabolism, Inborn Errors , Brain Diseases, Metabolic , Humans , Glutaryl-CoA Dehydrogenase , Lysine/metabolism , Brain Diseases, Metabolic/diagnosis , Brain Diseases, Metabolic/genetics , Brain Diseases, Metabolic/therapy , Amino Acid Metabolism, Inborn Errors/diagnosis , Amino Acid Metabolism, Inborn Errors/genetics , Amino Acid Metabolism, Inborn Errors/therapy , Glutarates/metabolism
...